因为实际上对称矩阵相似于由其特征值构成的对角矩阵,所以实对称矩阵的特征值相同时,它们相似于同一个对角矩阵,由相似的传递性知它们相似,一般矩阵不一定可对角化。
但当这两个矩阵是实对称矩阵时, 有相同的特征值必相似,比如当矩阵A与B的特征值相同,A可对角化,但B不可以对角化时,A和B就不相似。
扩展资料
注意事项:
1、注意n阶矩阵A与对角阵相似的充要条件就是A有n个线性无关的特征向量,不能只看特征值,所以当这两个矩阵都是实对称矩阵时,都一定可以对角化。
2、有相同的特征值就一定相似,这也就是课本上一般只讨论对实对称阵进行对角化的原因,对一般的矩阵讨论能否对角化比较复杂。