对称矩阵,合同一定相似吗?
1个回答
展开全部
未必,只需要给举个反例就行。
对角矩阵diag(3,3,3)合同于单位矩阵,而单位矩阵只能和单位矩阵相似,显然diag(3,3,3)不相似于单位矩阵。
合同与相似是特殊的等价关系,若两个矩阵相似或合同,则这两个矩阵一定等价,反之不成立。相似与合同不能互相推导,但是如果两个实对称矩阵是相似的,那肯定是合同的。
两矩阵合同的概念:设A,B是两个n阶方阵,若存在可逆矩阵C,使得C^TAC=B,则称方阵A与B合同,记作 A≃B。
两矩阵相似的概念:设A/B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)AP=B,则称矩阵A与B相似,记为A~B。
两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。
若矩阵A满足条件A=A',则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。
对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询