3个回答
展开全部
真子集和子集有区别:
1.含义不同:真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
2.性质不同:子集
(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
(2)对于空集,我们规定A,即空集是任何集合的子集。
真子集;对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。
1.含义不同:真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
2.性质不同:子集
(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
(2)对于空集,我们规定A,即空集是任何集合的子集。
真子集;对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。
展开全部
1.含义不同
真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
2.性质不同
子集
(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
真子集
对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。
如果集合AB,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作AB(或BA),读作“A真包含于B”(或“B真包含A”)。
真子集是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
2.性质不同
子集
(1)子集是一个数学概念,指某个集合中一部分的集合,亦称部分集合。若A和B都为集合,且A中所有元素都是B中的元素,则A是B的子集或称A包含于B。
真子集
对于集合A与B,x∈A有x∈B,则AB。可知任一集合A是自身的子集,空集是任一集合的子集。
如果集合AB,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作AB(或BA),读作“A真包含于B”(或“B真包含A”)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询