“函数f(x)=sin(x+φ)为奇函数”是“φ=0”的___条件.

 我来答
世纪网络17
2022-06-18 · TA获得超过5951个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:143万
展开全部
∵φ=0,∴函数f(x)=sin(x+φ)=sinx,
f(-x)=sin(-x)=-sin(x)=-f(x)
∴f(x)为奇函数,
∵函数f(x)=sin(x+φ)为奇函数,
∴sin(-x+φ)=-sin(x+φ)
sinφcosx-cosφsinx=-sinxcosφ-cosxsinφ
sinφcosx=-cosxsinφ,
即sinφ=0,φ=kπ,k∈z,
根据充分必要条件的定义可判断:
函数f(x)=sin(x+φ)为奇函数”是“φ=0”的必要不充分条件,
故答案为:必要不充分.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式