= .
1个回答
展开全部
分析:
解含有绝对值的不等式|x-3|<4,得到集合M={x|-1<x<7};解分式不等式,得集合N={x|-2<x<1且x∈Z}={-1,0}.最后根据交集的定义,可得M∩N={0}.
∵|x-3|<4∴-4<x-3<4?-1<x<7所以集合M={x||x-3|<4}={x|-1<x<7}∵∴-2<x<1所以集合N={x|,x∈Z}={x|-2<x<1且x∈Z}={-1,0}∴集合M∩N={0}故答案为:{0}
点评:
本题以集合的交集运算为载体,着重考查了绝对值不等式和分式不等式的解法,属于基础题.
解含有绝对值的不等式|x-3|<4,得到集合M={x|-1<x<7};解分式不等式,得集合N={x|-2<x<1且x∈Z}={-1,0}.最后根据交集的定义,可得M∩N={0}.
∵|x-3|<4∴-4<x-3<4?-1<x<7所以集合M={x||x-3|<4}={x|-1<x<7}∵∴-2<x<1所以集合N={x|,x∈Z}={x|-2<x<1且x∈Z}={-1,0}∴集合M∩N={0}故答案为:{0}
点评:
本题以集合的交集运算为载体,着重考查了绝对值不等式和分式不等式的解法,属于基础题.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
亚远景信息科技
2024-12-11 广告
2024-12-11 广告
上海亚远景信息科技有限公司是国内汽车行业咨询及评估领军机构之一,深耕于ASPICE、敏捷SPICE、ISO26262功能安全、ISO21434车辆网络安全领域,拥有20年以上的行业经验,专精于培训、咨询及评估服务,广受全球车厂及供应商赞誉,...
点击进入详情页
本回答由亚远景信息科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询