怎样求1/cosx的不定积分
1个回答
展开全部
∫ 1/cosx dx
=∫ cosx/ (cosx)^2 dx 上下同乘cosx
=∫ 1/(cosx)^2 d(sinx) 把cosxdx化为dsinx
=∫ 1/(1- (sinx)^2) d(sinx) 基本3角变换
换元让sinx=u
原式
=∫ 1/(1-u^2) du
=1/2 ∫ 1/(u+1) - 1/(u-1) du 化为部份分式
=1/2 (ln(u+1) - ln(u-1)) +C
=1/2 (ln(sinx+1) - ln(sinx-1)) +C 算到这步就可以了
=1/2 ln((sinx+1)/(sinx-1))+C 可以化成这样
=ln [((sinx+1)/(sinx-1))^1/2]+C 甚至这样
=∫ cosx/ (cosx)^2 dx 上下同乘cosx
=∫ 1/(cosx)^2 d(sinx) 把cosxdx化为dsinx
=∫ 1/(1- (sinx)^2) d(sinx) 基本3角变换
换元让sinx=u
原式
=∫ 1/(1-u^2) du
=1/2 ∫ 1/(u+1) - 1/(u-1) du 化为部份分式
=1/2 (ln(u+1) - ln(u-1)) +C
=1/2 (ln(sinx+1) - ln(sinx-1)) +C 算到这步就可以了
=1/2 ln((sinx+1)/(sinx-1))+C 可以化成这样
=ln [((sinx+1)/(sinx-1))^1/2]+C 甚至这样
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询