已知abc=1,a+b+c=2,a^2+b^2+c^2=3,则1/(ab+c-1)+1/(bc+a-1)+1/(ca+b-1)的值为( )

 我来答
世纪网络17
2022-06-11 · TA获得超过5956个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:144万
展开全部
abc = 1
a+b+c=2
a^2 + b^2 + c^2 =3
1=(a+b+c)^2-(a^2+b^2+c^2)
=2(ab+bc+ac)
所以
ab+bc+ac=1/2
abc = 1
a+b+c=2
[1/(ab+c-1)]+[1/(bc+a-1)]+[1/(ca+b-1)]
a+b+c=2
c-1=1-a-b
ab+c-1=ab+1-a-b=(a-1)(b-1)
[1/(ab+c-1)]+[1/(bc+a-1)]+[1/(ca+b-1)]
=1/[(a-1)(b-1)]+1/[(b-1)(c-1)]+1/[(c-1)(a-1)]
=[(a-1)+(b-1)+(c-1)]/[(a-1)(b-1)(c-1)]
=[a+b+c-3]/[abc-(ab+bc+ac)+(a+b+c)-1]
=(-1)/[1-1/2+2-1]
=(-1)/(3/2)
=-2/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式