线性代数行列式和矩阵的区别和联系,麻烦说的详细一点!

 我来答
世纪网络17
2022-08-18 · TA获得超过5924个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:139万
展开全部
数学上,矩阵就是由方程组的系数及常数所构成的方阵.把用在解线性方程组上既方便,又直观.例如对于方程组.
a1x+b1y+c1z=d1
a2x+b2y+c2z=d2
a3x+b3y+c3z=d3
来说,我们可以构成一个矩阵:
/ \
|a1 b1 c1 d1 |
| |
|a2 b2 c2 d2 |
| |
|a3 b3 c3 d3 |
\ /
因为这些数字是有规则地排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来.
矩阵就是一个数表,它不能从整体上被看成一个数(只有一个数的1阶矩阵除外),当矩阵的行数与列数相等为n时,我们把相应的数代入上面我提到的n^2元函数中就得到一个行列式.代入的方法则是简单的把两个表对应起来.
在作为一个数表的矩阵上,我们本可以任意的定义运算规则(真的是指你爱怎么定义就怎么定义),但是实际上我们多是把矩陈用于解决某些特殊类型的问题,所以你想要知道某种运算,比如乘法运算是怎么来的就得看年它们是做什么用的(比如用于线性变换).
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数.当我们写的时候,写成一个表是为了方便的反映函数的物性.当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看.为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理.
简单的说
矩阵是一个数表
行列式是行数列数相等的方阵按某种算法得出的一个数
如果本题有什么不明白可以追问,
另外发并点击我的头像向我求助,请谅解,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式