求不定积分 若f(x)=∫0→x dt/(1+t^2) +∫0→1/x dt/(1+t^2) ,则f(x)=

 我来答
户如乐9318
2022-09-03 · TA获得超过6616个赞
知道小有建树答主
回答量:2559
采纳率:100%
帮助的人:134万
展开全部
f(x)=∫0→x dt/(1+t^2) +∫0→1/x dt/(1+t^2)
=arctant|(0→x )+arctant|(0→1/x)
=arctanx+arctan(1/x)
=arctanx+arccotx
=π/2
或者f'(x)=1/(1+x^2)+1/(1+1/x^2)*(-1/x^2)
=1/(1+x^2)-1/(1+x^2)=0
故f(x)=c=f(1)=2∫0→1 dt/(1+t^2)
=2*(arctan1-arctan0)
=π/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式