
设连续函数f(x)=lnx-∫(1~e)f(x)dx,求f(x)
1个回答
展开全部
令常数a=∫(1~e)f(x)dx
则f(x)=lnx-a
再代入上式:a=∫(1~e)(lnx-a)dx=(1~e)[ xlnx-x-ax]=[e-e-ae]-[-1-a]=-ae+1+a
故有a=1/e
因此f(x)=lnx-1/e
则f(x)=lnx-a
再代入上式:a=∫(1~e)(lnx-a)dx=(1~e)[ xlnx-x-ax]=[e-e-ae]-[-1-a]=-ae+1+a
故有a=1/e
因此f(x)=lnx-1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询