函数的极限求证.. 用ε-N语言证明极限 lim(n-√(n^2-n))=1/2
展开全部
求证:lim(n->∞) (n-√(n^2-n))=1/2
证明:
① 对任意 ε>0,
要使 |( n-√(n^2-n)) -1/2| < ε 成立,
只要 | n/(n+√(n^2-n)) -1/2|=| [n-√(n^2-n))]/2(n+√(n^2-n))|
= | n/2(n+√(n^2-n))^2 | < |n/2n^2|1/2ε 即可.
② 故存在 N=[1/2ε] ∈N
③ 当 n>N 时,
④ 恒有:|( n-√(n^2-n)) -1/2| < ε 成立.
∴ lim(n->∞) (n-√(n^2-n))=1/2
证明:
① 对任意 ε>0,
要使 |( n-√(n^2-n)) -1/2| < ε 成立,
只要 | n/(n+√(n^2-n)) -1/2|=| [n-√(n^2-n))]/2(n+√(n^2-n))|
= | n/2(n+√(n^2-n))^2 | < |n/2n^2|1/2ε 即可.
② 故存在 N=[1/2ε] ∈N
③ 当 n>N 时,
④ 恒有:|( n-√(n^2-n)) -1/2| < ε 成立.
∴ lim(n->∞) (n-√(n^2-n))=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询