狭义相对论详细的证明方法.
1个回答
展开全部
洛仑兹变换: 设(x,y,z,t)所在坐标系(A系)静止,(X,Y,Z,T)所在坐标系(B系)速度为u,且沿x轴正向.在A系原点处,x=0,B系中A原点的坐标为X=-uT,即X+uT=0. 可令 x=k(X+uT) (1). 又因在惯性系内的各点位置是等价的,因此k是与u有关的常数(广义相对论中,由于时空弯曲,各点不再等价,因此k不再是常数.)同理,B系中的原点处有X=K(x-ut),由相对性原理知,两个惯性系等价,除速度反向外,两式应取相同的形式,即k=K. 故有 X=k(x-ut) (2). 对于y,z,Y,Z皆与速度无关,可得 Y=y (3). Z=z (4). 将(2)代入(1)可得:x=k^2(x-ut)+kuT,即 T=kt+((1-k^2)/(ku))x (5). (1)(2)(3)(4)(5)满足相对性原理,要确定k需用光速不变原理.当两系的原点重合时,由重合点发出一光信号,则对两系分别有x=ct,X=cT. 代入(1)(2)式得:ct=kT(c+u),cT=kt(c-u).两式相乘消去t和T得: k=1/sqr(1-u^2/c^2)=γ.将γ反代入(2)(5)式得坐标变换: X=γ(x-ut) Y=y Z=z T=γ(t-ux/c^2)
速度变换: V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2)) =(dx/dt-u)/(1-(dx/dt)u/c^2) =(v(x)-u)/(1-v(x)u/c^2) 同理可得V(y),V(z)的表达式.
尺缩效应: B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
钟慢效应: 由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T. (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量.)
光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).) B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时.B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为 △t(a)=γ△t(b) (1). 探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则 △t(N)=(1+β)△t(a) (2). 相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即 ν(b)△t(b)=ν(a)△t(N) (3). 由以上三式可得: ν(a)=sqr((1-β)/(1+β))ν(b).
动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c) 牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式. 牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了.即令V=dr/dτ=γdr/dt=γv为相对论速度.牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv.定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量.(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
相对论力学基本方程:: 由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样.(相对论中质量是变量)
质能方程: Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2 =Mv^2+Mc^2(1-v^2/c^2)-mc^2 =Mc^2-mc^2 即E=Mc^2=Ek+mc^2
能量动量关系: E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2 (注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度.)
这是三维证明,四维太繁
速度变换: V(x)=dX/dT=γ(dx-ut)/(γ(dt-udx/c^2)) =(dx/dt-u)/(1-(dx/dt)u/c^2) =(v(x)-u)/(1-v(x)u/c^2) 同理可得V(y),V(z)的表达式.
尺缩效应: B系中有一与x轴平行长l的细杆,则由X=γ(x-ut)得:△X=γ(△x-u△t),又△t=0(要同时测量两端的坐标),则△X=γ△x,即:△l=γ△L,△L=△l/γ
钟慢效应: 由坐标变换的逆变换可知,t=γ(T+Xu/c^2),故△t=γ(△T+△Xu/c^2),又△X=0,(要在同地测量),故△t=γ△T. (注:与坐标系相对静止的物体的长度、质量和时间间隔称固有长度、静止质量和固有时,是不随坐标变换而变的客观量.)
光的多普勒效应:(注:声音的多普勒效应是:ν(a)=((u+v1)/(u-v2))ν(b).) B系原点处一光源发出光信号,A系原点有一探测器,两系中分别有两个钟,当两系原点重合时,校准时钟开始计时.B系中光源频率为ν(b),波数为N,B系的钟测得的时间是△t(b),由钟慢效应可知,A△系中的钟测得的时间为 △t(a)=γ△t(b) (1). 探测器开始接收时刻为t1+x/c,最终时刻为t2+(x+v△t(a))/c,则 △t(N)=(1+β)△t(a) (2). 相对运动不影响光信号的波数,故光源发出的波数与探测器接收的波数相同,即 ν(b)△t(b)=ν(a)△t(N) (3). 由以上三式可得: ν(a)=sqr((1-β)/(1+β))ν(b).
动量表达式:(注:dt=γdτ,此时,γ=1/sqr(1-v^2/c^2)因为对于动力学质点可选自身为参考系,β=v/c) 牛顿第二定律在伽利略变换下,保持形势不变,即无论在那个惯性系内,牛顿第二定律都成立,但在洛伦兹变换下,原本简洁的形式变得乱七八糟,因此有必要对牛顿定律进行修正,要求是在坐标变换下仍保持原有的简洁形式. 牛顿力学中,v=dr/dt,r在坐标变换下形式不变,(旧坐标系中为(x,y,z)新坐标系中为(X,Y,Z))只要将分母替换为一个不变量(当然非固有时dτ莫属)就可以修正速度的概念了.即令V=dr/dτ=γdr/dt=γv为相对论速度.牛顿动量为p=mv,将v替换为V,可修正动量,即p=mV=γmv.定义M=γm(相对论质量)则p=Mv.这就是相对论力学的基本量:相对论动量.(注:我们一般不用相对论速度而是用牛顿速度来参与计算)
相对论力学基本方程:: 由相对论动量表达式可知:F=dp/dt,这是力的定义式,虽与牛顿第二定律的形式完全一样,但内涵不一样.(相对论中质量是变量)
质能方程: Ek=∫Fdr=∫(dp/dt)*dr=∫dp*dr/dt=∫vdp=pv-∫pdv =Mv^2-∫mv/sqr(1-v^2/c^2)dv=Mv^2+mc^2*sqr(1-v^2/c^2)-mc^2 =Mv^2+Mc^2(1-v^2/c^2)-mc^2 =Mc^2-mc^2 即E=Mc^2=Ek+mc^2
能量动量关系: E=Mc^2,p=Mv,γ=1/sqr(1-v^2/c^2),E0=mc^2,可得:E^2=(E0)^2+p^2c^2 (注:“γ”为相对论因子,γ=1/sqr(1-u^2/c^2),β=u/c,u为惯性系速度.)
这是三维证明,四维太繁
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询