三角函数中对称轴的性质是什么?
y=sin x (正弦函数) 对称轴:x=kπ+π/2(k∈Z)对称中心:(kπ,0)(k∈Z)。
y=cos x(余弦函数)对称轴:x=kπ(k∈Z) 对称中心:(kπ+π/2,0)(k∈Z)。
y=tan x (正切函数) 对称轴:无 对称中心: kπ/2+π/2,0)(k∈Z)。
y=cot x(余切函数)对称轴:无 对称中心: kπ/2,0)(k∈Z)
y=sec x(正割函数) 对称轴:x=kπ(k∈Z) 对称中心:(kπ+π/2,0)(k∈Z)
y=csc x (余割函数) 对称轴:x=kπ+π/2(k∈Z) 对称中心:(kπ,0)(k∈Z)
扩展资料:
三角函数记忆口诀
三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,
变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
参考资料:百度百科---三角函数