集合A中有n个元素,多少个真子集,为什么
有2的n次方-1个真子集。
n个元素,每个元素都有选中和不选中两种可能性。
所以n个元素就一共有2的n次方种可能性。
所以这个集合就有2的n次方个子集。
但是全部都选中的话,那么就是这个集合自己,自己不是自己的真子集,所以这种可能性必须除去。
因此真子集个数就是2的n次方-1个。
如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集。记作A⊊B(或B⊋A),读作“A真包含于B”(或“B真包含A”)。
即:对于集合A与B,∀x∈A有x∈B,且∃x∈B且x∉A,则A⊊B。空集是任何非空集合的真子集。
扩展资料:
假设有实数x < y:
①[x,y] :方括号表示包括边界,即表示x到y之间的数以及x和y;
②(x,y):小括号是不包括边界,即表示大于x、小于y的数。
若 A,B,C是集合,则:
自反性: A⊆A,反对称性: A⊆ B且 B⊆ A,当且仅当A= B,传递性: 若 A⊆ B且 B⊆ C则 A⊆ C。这个命题说明:对任意集合 S,S的幂集按包含排序是一个有界格,与上述命题相结合,则它是一个布尔代数。
若 A,B,C是集合 S的子集,则:
存在一个最小元和一个最大元: ∅ ⊆ A⊆ S( ∅⊆A由命题2给出)。存在并运算: A⊆ A∪B若 A⊆ C且 B⊆ C则 A∪B⊆ C存在交运算: A∩B⊆ A若 C⊆ A且 C⊆ B则 C⊆ A∩B。
这个命题说明:表述 "A⊆ B" 和其他使用并集,交集和补集的表述是等价的,即包含关系在公理体系中是多余的。
广告 您可能关注的内容 |