设a,b,c,d都是实数,且a^2+b^2=1,c^2+d^2=1,请证明丨ac+bd丨≤1 我来答 1个回答 #热议# 海关有哪些禁运商品?查到后怎么办? 机器1718 2022-08-08 · TA获得超过6837个赞 知道小有建树答主 回答量:2805 采纳率:99% 帮助的人:161万 我也去答题访问个人页 关注 展开全部 根据已知.|ac+bd丨≤1则(ac+bd)^2≤1(ac)^2+(bd)^2+2abcd≤1又(a^2+b^2)(c^2+d^2)=1(ac)^2+(bd)^2=1-(bc)^2-(ad)^2代入不等式得1-(bc)^2-(ad)^2+2abcd≤1整理得(bc)^2+(ad)^2-2abcd≥0(bc-ad)^2≥0原等式成立... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: