π的计算方法有哪些?
国际上公认的计算π的值得最好的方法,就是在一向一个边长为1的正方形区域里面随机的扔一些石子,用落在扇形里面的个数和总的个数的一个比例关系,就可以近似求解出π的值。
就类似这样,我们可以知道这个比值 = (π/4),故π = 4*rate(比值) 。
下面贴一下Java的实现代码:
public class RandomPI {
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(rand_pi(100000)); //改变参数值
}
public static double rand_pi(int n) {
int numInCircle = 0;
double x, y;
double pi;
for(int i=0;i < n; i++){
x = Math.random();
y = Math.random();
if(x * x + y * y < 1)
numInCircle++;
}
pi=(4.0 * numInCircle) / n;
return pi;
}
}
扩展资料:
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积。以前的人计算圆周率,是要探究圆周率是否循环小数。
自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。
参考资料: