a,b为自然数,且56a+392b为完全平方数,求a+b的最小值.

 我来答
华源网络
2022-07-21 · TA获得超过5589个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:146万
展开全部
56a+392b=56×(a+7b)=4×14×(a+7b) a+7b=14t (t为完全平方数),
所以a是7的倍数,a≥7,b是非零自然数,所以b≥1,所以a+b≥8,
当t=1时,a=7,b=1,a+b=8 所以a+b的最小值为8答:
a+b的最小值是8.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式