求解 拉格朗日乘数法 详细过程 谢谢

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8980万
展开全部

解答过程如图所示:

扩展资料:

设给定二元函数z=ƒ(x,y)和附加条件φ(x,y)=0,为寻找z=ƒ(x,y)在附加条件下的极值点,先做拉格朗日函数,其中λ为参数。



1、令F(x,y,λ)对x和y和λ的一阶偏导数等于零,即F'x=ƒ'x(x,y)+λφ'x(x,y)=0,F'y=ƒ'y(x,y)+λφ'y(x,y)=0,F'λ=φ(x,y)=0

2、由上述方程组解出x,y及λ,如此求得的(x,y),就是函数z=ƒ(x,y)在附加条件φ(x,y)=0下的可能极值点。

3、若这样的点只有一个,由实际问题可直接确定此即所求的点。

参考资料来源:百度百科-拉格朗日乘数法

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式