不可导点一定不是极值点吗?
1个回答
展开全部
驻点或不可导点有可能是极值点。
驻点和不可导点都可能是极值点。换句话说,极值点只能是驻点或不可导点,驻点或不可导点有可能是极值点,也有可能不是极值点。
如上所述,x=0是函数y=|x|的极小值点,却是不可导点;x=0是函数y=x^3的驻点,却不是极值点。
扩展资料:
若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。同理,若对D的所有点,都有f(x)>f(x₀),则称f(x₀)是函数f(x)的一个极小值。
极值的概念来自数学应用中的最大最小值问题。根据极值定律,定义在一个有界闭区域上的每一个连续函数都必定达到它的最大值和最小值,问题在于要确定它在哪些点处达到最大值或最小值。如果极值点不是边界点,就一定是内点。因此,这里的首要任务是求得一个内点成为一个极值点的必要条件。
求极值点步骤
(1)求出f'(x)=0,f"(x)≠0的x值;
(2)用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。
(3)上述所有点的集合即为极值点集合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询