为什么“无穷多个无穷小的乘积不一定是无穷小”?

 我来答
妖感肉灵10
2022-11-16 · TA获得超过6.4万个赞
知道顶级答主
回答量:101万
采纳率:99%
帮助的人:2.4亿
展开全部

证明如下:

无穷小的性质是:

1、有限个无穷小量之和仍是无穷小量。

2、有限个无穷小量之积仍是无穷小量。

3、有界函数与无穷小量之积为无穷小量。

4、特别地,常数和无穷小量的乘积也为无穷小量。

5、恒不为零的无穷小量的倒数为无穷大,无穷大的倒数为无穷小。

6、无穷小量不是一个数,它是一个变量。

7、零可以作为无穷小量的唯一一个常量。

8、无穷小量与自变量的趋势相关。

扩展资料:

等价无穷小的使用:

等价无穷小替换是计算未定型极限的常用方法,可以使求极限问题化繁为简,化难为易。求极限时,使用等价无穷小的条件 :

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式