怎么用海涅定理证明狄利克雷函数的极限不存在?
1个回答
展开全部
狄利克雷函数D(x)=0(x为无理数时)D(x)=1(x为有理数时)
根据海涅定理,对于任意实数x0,lim(x->x0) D(x)这个极限存在的充要条件是,在x0的去心邻域内,任何以x0为极限的为极限的数列{xn}(xn不等于x0),极限lim(n->∞)D(xn)=A存在。
不妨设x0为有理数。取an=x0-1/n,an->x0时,n->∞,此时an必为有理数,所以lim(n->∞)D(an)=1。再取bn=x0-π/n,bn->x0时,n->∞,此时bn必为无理数,所以lim(n->∞)D(bn)=0。两个数列极限不同,所以D(x)的极限不存在。
x0为无理数时同理易证。
以上就是用海涅定理证明狄利克雷函数极限不存在的简要过程,核心思想就是,任意x0,一定可以找到趋近于x0的有理数列和无理数列,两个数列的极限不同,函数极限则不存在。
若有帮助,请采纳。
根据海涅定理,对于任意实数x0,lim(x->x0) D(x)这个极限存在的充要条件是,在x0的去心邻域内,任何以x0为极限的为极限的数列{xn}(xn不等于x0),极限lim(n->∞)D(xn)=A存在。
不妨设x0为有理数。取an=x0-1/n,an->x0时,n->∞,此时an必为有理数,所以lim(n->∞)D(an)=1。再取bn=x0-π/n,bn->x0时,n->∞,此时bn必为无理数,所以lim(n->∞)D(bn)=0。两个数列极限不同,所以D(x)的极限不存在。
x0为无理数时同理易证。
以上就是用海涅定理证明狄利克雷函数极限不存在的简要过程,核心思想就是,任意x0,一定可以找到趋近于x0的有理数列和无理数列,两个数列的极限不同,函数极限则不存在。
若有帮助,请采纳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询