∫x+1/x²根号x²+1dx?
1个回答
展开全部
令 x = tant, 则 dx = (sect)^2dt
∫(x+1)dx/[x²√(x²+1)] = ∫(tant+1)(sect)^2dt/[sect(tant)^2]
= ∫(tant+1)sectdt/(tant)^2 = ∫(sint+cost)dt/(sint)^2
= ∫[1/sint + cost/(sint)^2]dt = ln|csct-cott| - 1/sint + C
= ln|[√(x²+1)-1]/x| - √(x²+1)/x+ C
∫(x+1)dx/[x²√(x²+1)] = ∫(tant+1)(sect)^2dt/[sect(tant)^2]
= ∫(tant+1)sectdt/(tant)^2 = ∫(sint+cost)dt/(sint)^2
= ∫[1/sint + cost/(sint)^2]dt = ln|csct-cott| - 1/sint + C
= ln|[√(x²+1)-1]/x| - √(x²+1)/x+ C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询