如何求数列的前n项和的平方和?
1个回答
展开全部
等差数列的通项公式为:an=a1+(n-1)d
前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (n属于自然数)。
a1为首项,an为末项,n为项数,d为等差数列的公差。
等比数列 an=a1×q^(n-1);
求和:Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)
推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+...... +an
Sn =an+ an-1+an-2...... +a1
上下相加得Sn=(a1+an)n/2
扩展资料:
平方和相关公式:
(1)1+2+3+.+n=n(n+1)/2
(2)1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
(3)1×2+2×3+3×4+4×5+…+n(n+1)
=(1^2+1)+(2^2+2)+(3^2+2)+...+(n^2+n)
=(1^2+2^2+...+n^2)+(1+2+3+.+n)
=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询