xe^(- x) dx的积分是什么?
2个回答
展开全部
∫ xe^(- x) dx
= - ∫ xe^(- x) d(- x)
= - ∫ x d[e^(- x)]
= - [xe^(- x) - ∫ e^(- x) dx] <--分部积分法
= - xe^(- x) + (- 1)∫ e^(- x) d(- x)
= - xe^(- x) - e^(- x) + C
= - (x + 1)e^(- x) + C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数芦大信
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,陪轮其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、仿念∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询