直流伺服电机的驱动原理
2022-09-26 · 百度认证:北京惠企网络技术有限公司官方账号
伺服电机的定子和转子由永磁体或铁芯线圈构成。永磁体产生磁场,而铁芯线圈通电后也会产生磁场。定子磁场和转子磁场相互作用产生力矩,使电机带动负载运动,从而通过磁的形式将电能转换为机械能。
电机的基本运动方程指出电机转矩、转速之间的关系。在负载一定条件下,只有改变电机转矩才能改变电机转速。
当电机转矩大于负载转矩时,电机产生加速运动;当电机转矩小于负载转矩时,电机产生减速运动;当电机转矩等于负载转矩时,电机恒速运动。电机及负载转动惯量是影响速度变化的另一主要因素。
扩展资料
伺服系统常要求伺服电机即能正向运动,又能反向运动;即能加速运动又能减速运动。这就要求电机力矩的大小及方向都能改变。
电机在做正向或反向的加速或匀速运动时,力矩和速度的方向一致,电机产生驱动转矩‘推”动电机旋转,这种状态称为电动状态;当电机做正向或反向的减速运动时,力矩和速度的方向相反,电机产生制动转矩;“拉” 动电机停止,这种状态称为制动状态。
四象限运行能力是伺服电机与一般电机区别的个重要标志。它要求电机能提供方向及大小均可控制的转矩和转速。
电枢有5个线圈,每个线圈产生的磁势矢量相加得到合成磁势。合成磁势的方向依然随转子旋转而改变。这仅使电机力矩更大一些,力矩的大小及方向改变的问题依然存在。
假如我们在转子旋转时,能通过电流换向,始终保证电枢几何中性面以上的全部绕组端子为电流流进,下面的绕组端子为电流流出,就能保证转子合成磁势的方向不变,且与定子磁势垂直。
2024-03-28 广告