f(x)= a(x)+ b(x)是怎么求导的?

 我来答
学屋舍
2023-01-15 · TA获得超过5011个赞
知道小有建树答主
回答量:8434
采纳率:100%
帮助的人:144万
展开全部

上限为a(x),下限为b(x)
y=(a(x),b(x))∫f(t)dt
已知f(x)原函数是F(x),F'(x)=f(x)
(观察y=(a,b)∫f(t)dt=F(a)-F(b),括号里跟着代入就行了)
所以
y=(a(x),b(x))∫f(t)dt=F[a(x)]-F[b(x)]
两边求导
y'=(F[a(x)])'-(F[b(x)])'=F'[a(x)]a'(x)-F'[b(x)]b'(x)

积分变限函数是一类重要的函数,它最著名的应用是在牛顿一莱布尼兹公式的证明中.事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。

积分变限函数除了能拓展我们对函数概念的理解外,在许多场合都有重要的应用。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式