一元二次不等式的解法高中数学
一元二次不等式的解法高中数学如下:
1、当-=b3-4ac≥0时,二次三项式,ax2+bx+c有两个实根,那么ax2+bx+c,总可分解为a(x-x1)(x-x2)的形式。这样,解—元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集,就是这两个—元一次不等式组的解集的交集。
2、用配方法解—元二次不等式。
3、通过一元二次函数图象进行求解,二次函数图象与X轴的两个交点,然后根据题目所需求的<0"或">0"而推出答案。
4、数轴穿根:用根轴法解高次不等式时,就是先把不等式—端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点。
这大于零的不等式的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴标根法。
基本解法是:用一元二次方程公式法求出两个根,再根据不等号情况,确定不等式解集区间。求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式左边并进行因式分解分类讨论求出解集。
解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。
资料拓展:
用符号“>”“<”表示大小关系的式子,叫作不等式。用“≠”表示不等关系的式子也是不等式。通常不等式中的数是实数,字母也代表实数。
不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z )。两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。