分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE。已知∠BAC=30°;EF=AC,垂足为F连接DF
2个回答
展开全部
证明:(1)∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴∠AEF=30°
∴AE=2AF,且AB=2AF,
∴AF=CB,
而∠ACB=∠AFE=90°,
在Rt△AFE和Rt△BCA中,
,
∴△AFE≌△BCA(HL),
∴AC=EF;
(2)由(1)知道AC=EF,
而△ACD是等边三角形,
∴∠DAC=60°
∴EF=AC=AD,且AD⊥AB,
而EF⊥AB,
∴EF∥AD,
∴四边形ADFE是平行四边形.
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴∠AEF=30°
∴AE=2AF,且AB=2AF,
∴AF=CB,
而∠ACB=∠AFE=90°,
在Rt△AFE和Rt△BCA中,
,
∴△AFE≌△BCA(HL),
∴AC=EF;
(2)由(1)知道AC=EF,
而△ACD是等边三角形,
∴∠DAC=60°
∴EF=AC=AD,且AD⊥AB,
而EF⊥AB,
∴EF∥AD,
∴四边形ADFE是平行四边形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询