对于R上的可导的任意函数f(x),若满足xf"(x)≥0,则f(-1)+f(1)与2f(0)的大小关系为

ArondightSword
2011-02-03 · TA获得超过4.2万个赞
知道大有可为答主
回答量:5649
采纳率:68%
帮助的人:2707万
展开全部
楼上的以偏概全。下面给出完整证明方法:
用泰勒公式:
f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x)
因而
f(x)=f(0)+f'(0)x+f''(0)x²/2+Rn(x)
f(1)=f(0)+f'(0)+f''(0)/2
f(-1)=f(0)-f'(0)+f''(0)/2
所以:f(-1)+f(1)=2f(0)+f''(0)
xf"(x)≥0 可知,x>0时,f"(x)≥0 x<0时,f"(x)≤0 且由题意得f(x)二阶可导。 因而,f''(0)=0
所以f(-1)+f(1)=2f(0)
schumiandmassa
2011-02-01 · TA获得超过2618个赞
知道小有建树答主
回答量:689
采纳率:0%
帮助的人:388万
展开全部
额,这个可以用特例嘛
xf"(x)≥0,因为f(x)是任意可导函数,所以不妨设f"(x)=x
所以f‘(x)=x^2/2+C1
所以f(x)=x^3/6+C1x+C2
f(-1)+f(1)=-1/6-C1+C2+1/6+C1+C2=2C2
2f(0)=2C2
可见两者是相等关系
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式