已知函数f(x)=cos²x/2-sin²x/2+sin+求f(x)最小正周期
1个回答
2011-02-01 · 知道合伙人教育行家
关注
展开全部
f(x)=cos²x/2-sin²x/2 + sinx
=cosx + sinx
=根号2(sinxcosπ/4+cosxsinπ/4)
=根号2 sin(x+π/4)
最小正周期2π
x0∈(0,π/4)且f(x0)=4根号2分之5,即:
根号2 sin(x0+π/4)=5/(4根号2)
sin(x0+π/4)=5/8
cos(x0+π/4)=根号(1-5^2/8^2))=根号39 /8
f(x0+π/6)=sin(x0+π/6)=sin[(x0+π/4)-(π/4-π/6)]
=sin(x0+π/4)cos(π/4-π/6) - cos(x0+π/4)sin(π/4-π/6)
=5/8(cosπ/4cosπ/6+sinπ/4sinπ/6)-7/8(sinπ/4cosπ/6-cosπ/4sinπ/6)
=5/8 * 根号2/2 * (根号3/2+1/2) - 根号39 /8* 根号2/2 * (根号3/2-1/2)
=根号2/32 * [ 5(根号3+1) - 根号39(根号3-1)]
=根号2/32 * [ 5+5根号3+根号39- 3根号13)]
= [ 5根号2+5根号6+根号78- 3根号26)]/32
=cosx + sinx
=根号2(sinxcosπ/4+cosxsinπ/4)
=根号2 sin(x+π/4)
最小正周期2π
x0∈(0,π/4)且f(x0)=4根号2分之5,即:
根号2 sin(x0+π/4)=5/(4根号2)
sin(x0+π/4)=5/8
cos(x0+π/4)=根号(1-5^2/8^2))=根号39 /8
f(x0+π/6)=sin(x0+π/6)=sin[(x0+π/4)-(π/4-π/6)]
=sin(x0+π/4)cos(π/4-π/6) - cos(x0+π/4)sin(π/4-π/6)
=5/8(cosπ/4cosπ/6+sinπ/4sinπ/6)-7/8(sinπ/4cosπ/6-cosπ/4sinπ/6)
=5/8 * 根号2/2 * (根号3/2+1/2) - 根号39 /8* 根号2/2 * (根号3/2-1/2)
=根号2/32 * [ 5(根号3+1) - 根号39(根号3-1)]
=根号2/32 * [ 5+5根号3+根号39- 3根号13)]
= [ 5根号2+5根号6+根号78- 3根号26)]/32
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询