高中数学题 解析几何
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为e=√3/3,以原点为圆心,椭圆短半轴长为半径的圆余直线x-y+2=0相切,A、B分别是团圆的两个顶...
已知椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的离心率为e=√3 / 3,以原点为圆心,椭圆短半轴长为半径的圆余直线x-y+2=0相切,A、B分别是团圆的两个顶点,P为椭圆C上的动点。
(1)求椭圆C的方程。
(2)若P与A,B均不重合,设直线PA与PB的斜率分别为k1 ,k2,证明:k1*k2为定值。
(3)M为过点P且垂直于x轴的直线上的点,若|OP| / |OM| =t ,求点M的轨迹方程。 展开
(1)求椭圆C的方程。
(2)若P与A,B均不重合,设直线PA与PB的斜率分别为k1 ,k2,证明:k1*k2为定值。
(3)M为过点P且垂直于x轴的直线上的点,若|OP| / |OM| =t ,求点M的轨迹方程。 展开
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询