高中数学基本公式

钢铁加鲁鲁变身
2011-02-01 · TA获得超过2742个赞
知道小有建树答主
回答量:107
采纳率:0%
帮助的人:57.8万
展开全部
高中数学基本公式
抛物线:y = ax *+ bx + c
a > 0时开口向上a < 0时开口向下
c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
-h是顶点坐标的x k是顶点坐标的y一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
三角函数:两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
•万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
公式分类 公式表达式
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r
001任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
002任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
003到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
004和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
005到已知角的两边距离相等的点的轨迹,是这个角的平分线
006到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
007定理 不在同一直线上的三点确定一个圆。
008垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
009①直线l和⊙o相交 d<r ②直线l和⊙o相切 d=r ③直线l和⊙o相离 d>r
010①两圆外离 d>r+r ②两圆外切 d=r+r
③两圆相交 r-r<d<r+r(r>r)
④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)
011正n边形的面积sn=pnrn/2 p表示正n边形的周长
012正三角形面积√3a/4 a表示边长
013弧长计算公式:l=nπr/180
014扇形面积公式:s扇形=nπr2/360=lr/2
夙寻凝武好
2019-09-24 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:584万
展开全部
1.集合元素具有①确定性②互异性③无序性
2.集合表示方法①列举法
②描述法
③韦恩图
④数轴法
3.集合的运算

A∩(B∪C)=(A∩B)∪(A∩C)

Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
4.集合的性质
⑴n元集合的子集数:2n
真子集数:2n-1;非空真子集数:2n-2
高中数学概念总结
一、
函数
1、
若集合A中有n
个元素,则集合A的所有不同的子集个数为
,所有非空真子集的个数是

二次函数
的图象的对称轴方程是
,顶点坐标是
。用待定系数法求二次函数的解析式时,解析式的设法有三种形式,即


(顶点式)。
2、
幂函数
,当n为正奇数,m为正偶数,m<n时,其大致图象是
3、
函数
的大致图象是
由图象知,函数的值域是
,单调递增区间是
,单调递减区间是

二、
三角函数
1、
以角
的顶点为坐标原点,始边为x轴正半轴建立直角坐标系,在角
的终边上任取一个异于原点的点
,点P到原点的距离记为
,则sin
=
,cos
=
,tg
=
,ctg
=
,sec
=
,csc
=

2、同角三角函数的关系中,平方关系是:



倒数关系是:



相除关系是:


3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。如:

=


4、
函数
的最大值是
,最小值是
,周期是
,频率是
,相位是
,初相是
;其图象的对称轴是直线
,凡是该图象与直线
的交点都是该图象的对称中心。
5、
三角函数的单调区间:
的递增区间是
,递减区间是

的递增区间是
,递减区间是

的递增区间是

的递减区间是
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
abcluoshengcai
2012-12-08
知道答主
回答量:2
采纳率:0%
帮助的人:3062
展开全部
楼主太牛了!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式