n,k是正整数,且满足不等式 1/7<n-k/n+k<63/439.若对于某一给定的n,只有唯一的k使不等式成立,求最大最小
展开全部
解:
1/7<(n-k)/(n+k)<63/439 即
1/7<(n+k-2k)/(n+k)<63/439 即
1/7<1-(2k)/(n+k)<63/439 即
-6/7<-2k/(n+k)<-376/439 即
188/439<k/(n+k)<3/7 即
7/3<(n+k)/k<439/188 即
7/3<n/k +1<439/188 即
4/3<n/k<251/188 即
188/251<k/n<3/4 .....(1)
即 188n/251<k<3n/4.....(2)
因为 k为正整数,且对于给定的n,k只有一个,
所以 3n/4 - 188n/251 ≤ 2,即
n≤2008
当n=2008,代入(2)有1504<k<1506,只能取得唯一k=1505
故n的最大值为2008。
又根据(1)式188/251<k/n<3/4,即 752/1004<k/n<753/1004,显然分子n>1004
当n取1005时,752.75<k<753.75 (为了比较方便,我把分式化为近似小数),有唯一对应的k=753,
故n的最小值为1005。.
1/7<(n-k)/(n+k)<63/439 即
1/7<(n+k-2k)/(n+k)<63/439 即
1/7<1-(2k)/(n+k)<63/439 即
-6/7<-2k/(n+k)<-376/439 即
188/439<k/(n+k)<3/7 即
7/3<(n+k)/k<439/188 即
7/3<n/k +1<439/188 即
4/3<n/k<251/188 即
188/251<k/n<3/4 .....(1)
即 188n/251<k<3n/4.....(2)
因为 k为正整数,且对于给定的n,k只有一个,
所以 3n/4 - 188n/251 ≤ 2,即
n≤2008
当n=2008,代入(2)有1504<k<1506,只能取得唯一k=1505
故n的最大值为2008。
又根据(1)式188/251<k/n<3/4,即 752/1004<k/n<753/1004,显然分子n>1004
当n取1005时,752.75<k<753.75 (为了比较方便,我把分式化为近似小数),有唯一对应的k=753,
故n的最小值为1005。.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询