求解:∑_(n=1~∞)[(1/2)^n*(n+1)*1/n!]
1个回答
展开全部
∑_(n=1~∞)[(1/2)^n*(n+1)*1/n!]=
∑_(n=1~∞)[(1/2)^n /n!]+∑_(n=1~∞)[(1/2)^n*1/(n-1)!]=
∑_(n=1~∞)[(1/2)^n /n!]+(1/2)∑_(n=1~∞)[(1/2)^(n-1)/(n-1)!]
知e^x=1+x+x^2/2!+x^3/3!+...
∑_(n=1~∞)[(1/2)^n*(n+1)*1/n!]=
∑_(n=1~∞)[(1/2)^n /n!]+(1/2)∑_(n=1~∞)[(1/2)^(n-1)/(n-1)!]
=[e^(1/2) - 1 ] + [(1/2)e^(1/2) ]=3sqrt(e)/2 -1
∑_(n=1~∞)[(1/2)^n /n!]+∑_(n=1~∞)[(1/2)^n*1/(n-1)!]=
∑_(n=1~∞)[(1/2)^n /n!]+(1/2)∑_(n=1~∞)[(1/2)^(n-1)/(n-1)!]
知e^x=1+x+x^2/2!+x^3/3!+...
∑_(n=1~∞)[(1/2)^n*(n+1)*1/n!]=
∑_(n=1~∞)[(1/2)^n /n!]+(1/2)∑_(n=1~∞)[(1/2)^(n-1)/(n-1)!]
=[e^(1/2) - 1 ] + [(1/2)e^(1/2) ]=3sqrt(e)/2 -1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询