初二数学证明题 求过程
1、如图,△ABC中,∠C=90°,AD平分∠A交BC于D,CH⊥AB于H,CH交AD于F,DE⊥AB于E,试判断四边形CDEF的形状,并说明理由。2、如图,在平行四边形...
1、如图,△ABC中,∠C=90°,AD平分∠A交BC于D,CH⊥AB于H,CH交AD于F,DE⊥AB于E,试判断四边形CDEF的形状,并说明理由。
2、如图,在平行四边形ABCD中,BC=CE,AC=CF。求证:△ADG是等腰三角形。
3、四边形ABCD是梯形,如图所示,其中AD‖BC,O为一腰CD的中点。
(1)以O为对称中心作△AOD的对称图形三角形COE;
(2)B、C、E三点在同一条直线上吗?说明理由
(3)由(1)、(2)你能想到什么结论?
我插入不了图片 我把点的位置大致轮廓画下 自己填
1、 C
D
F
A H E B
2、 A D
G
B C E F (注:四边形ABED是四边形 F是BE延长线的点 G是AF交DE的点)
3、 A D
O
B C 展开
2、如图,在平行四边形ABCD中,BC=CE,AC=CF。求证:△ADG是等腰三角形。
3、四边形ABCD是梯形,如图所示,其中AD‖BC,O为一腰CD的中点。
(1)以O为对称中心作△AOD的对称图形三角形COE;
(2)B、C、E三点在同一条直线上吗?说明理由
(3)由(1)、(2)你能想到什么结论?
我插入不了图片 我把点的位置大致轮廓画下 自己填
1、 C
D
F
A H E B
2、 A D
G
B C E F (注:四边形ABED是四边形 F是BE延长线的点 G是AF交DE的点)
3、 A D
O
B C 展开
3个回答
展开全部
1、菱形
CH⊥AB DE⊥AB
则CH‖DE
则∠HFE=∠HCB
又因∠HFE+∠HEF=90°=∠HCB+∠HBC
则∠HEF=∠HBC
则HE‖CD
即四边形HECD为平行四边形
因为∠CAD=∠BAD BC⊥AC DE⊥AB
则CD=DE
及平行四边形HECD为菱形
2、ACED为平行四边形(一组对边平行且相等)
则AC//DE
则∠BCA=∠BED
∠BCA=∠CAF+∠CFA
∠BED=∠CFA+∠FGE
则∠CAF=∠FGE
AD//BC
则∠BCA=∠DAC
∠BCA=∠CAF+∠CFA
∠DAC=∠CAF+∠FAD
则∠CFA=∠FAD
因为AC=CF
则∠CAF=∠CFA
则∠FGE=∠FAD
因为∠FGE=∠AGD
则∠AGD=∠FAD
即DA=DG △ADG是等腰三角形。
3、(2)在
O为对称中心
则AD//CE
因为AD//BC BC、CE有公共点C
则B C E在同一条直线上
CH⊥AB DE⊥AB
则CH‖DE
则∠HFE=∠HCB
又因∠HFE+∠HEF=90°=∠HCB+∠HBC
则∠HEF=∠HBC
则HE‖CD
即四边形HECD为平行四边形
因为∠CAD=∠BAD BC⊥AC DE⊥AB
则CD=DE
及平行四边形HECD为菱形
2、ACED为平行四边形(一组对边平行且相等)
则AC//DE
则∠BCA=∠BED
∠BCA=∠CAF+∠CFA
∠BED=∠CFA+∠FGE
则∠CAF=∠FGE
AD//BC
则∠BCA=∠DAC
∠BCA=∠CAF+∠CFA
∠DAC=∠CAF+∠FAD
则∠CFA=∠FAD
因为AC=CF
则∠CAF=∠CFA
则∠FGE=∠FAD
因为∠FGE=∠AGD
则∠AGD=∠FAD
即DA=DG △ADG是等腰三角形。
3、(2)在
O为对称中心
则AD//CE
因为AD//BC BC、CE有公共点C
则B C E在同一条直线上
展开全部
1. 菱形
理由是:根据题意得 FE‖CB
RT△ACD≌RT△AED
∴CD=DE
∵CH⊥AB,DE⊥AB
即 CF‖CE
∴四边形CDEF为平行四边形
∴口CDEF为菱形(一组邻边相等的平行四边形是菱形)
2.根据题意得 四边形ACED为平行四边形
∴AC‖DE
∴∠CAF=∠DGA
∵AC=CF
∴∠CAF=∠CFA
∵AD‖BC即 AD‖BF
∴∠DAF=∠CFA
∴∠DGA=∠DAF
∴ AD=DG
△ADG为等腰△
3.(1)A____D
/ \ l
/ l O
/ l \
B/_______ C l____E
(2) 在同一直线上
理由是:根据题意得 CE在BC的延长线上
∴ B、C、E三点在同一条直线上
(3). 梯形ABCD是直角梯形。
理由是:根据题意得 FE‖CB
RT△ACD≌RT△AED
∴CD=DE
∵CH⊥AB,DE⊥AB
即 CF‖CE
∴四边形CDEF为平行四边形
∴口CDEF为菱形(一组邻边相等的平行四边形是菱形)
2.根据题意得 四边形ACED为平行四边形
∴AC‖DE
∴∠CAF=∠DGA
∵AC=CF
∴∠CAF=∠CFA
∵AD‖BC即 AD‖BF
∴∠DAF=∠CFA
∴∠DGA=∠DAF
∴ AD=DG
△ADG为等腰△
3.(1)A____D
/ \ l
/ l O
/ l \
B/_______ C l____E
(2) 在同一直线上
理由是:根据题意得 CE在BC的延长线上
∴ B、C、E三点在同一条直线上
(3). 梯形ABCD是直角梯形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、直角三角形ADE,ADC全等,DE//CF,CDEF是菱形;
2、ACED为平行四边形(一组对边平行且相等),AC//DE,角CAG=角AGD,AD//CF,角GAD=角AFC,AC=FC,角CAF=角AFC,推出,角AGD=角GAD,AD=GD;
3、BCE在一条直线上,角ADO=角ECO,梯形,角BCO+角ADO=180°,推出BCE在一条直线上;
至于能想到的结论,大概是梯形面积公式吧
2、ACED为平行四边形(一组对边平行且相等),AC//DE,角CAG=角AGD,AD//CF,角GAD=角AFC,AC=FC,角CAF=角AFC,推出,角AGD=角GAD,AD=GD;
3、BCE在一条直线上,角ADO=角ECO,梯形,角BCO+角ADO=180°,推出BCE在一条直线上;
至于能想到的结论,大概是梯形面积公式吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询