请教一道数学题:实数a,b,c满足(a+c)(a+b+c)<0,证明:(b-c)^2>4a(a+b+c)

是不是这样:展开得a^2+(b+2c)a+c(b+c)<0令a^2+(b+2c)a+c(b+c)=0解得a1=-c,a2=-b-c所以可得-c<a<-b-c(b<0)或-... 是不是这样:
展开得a^2+(b+2c)a+c(b+c)<0
令a^2+(b+2c)a+c(b+c)=0
解得a1=-c,a2=-b-c
所以可得-c<a<-b-c (b<0)
或-b-c<a<-c (b>0)
接下来呢?代进去的话似乎头绪很乱啊
要证的式子左边是b-c的平方,谢谢,我完全看不懂你写的是什么...
展开
若霜往03
2011-02-01 · TA获得超过1836个赞
知道小有建树答主
回答量:238
采纳率:0%
帮助的人:183万
展开全部
证明如下:
由(a+c)(a+b+c)<0知:
4a(a+b+c)<-4c(a+b+c)
只需证明-4c(a+b+c)<2(b-c)即可
设y=2(b-c)-(-4c(a+b+c))
=4c^2+2c(2a+2b-1)+2b
因为(a+c)<0,(a+c+b)>0
另b=-(a+c)
y>4c^2+2c(2a-2(a+c)-1)-2(a+c)
=-2a-4c=-2(a+c)-2c
>0
所以原命题成立
牛家乐博士
2011-02-02 · TA获得超过1809个赞
知道答主
回答量:115
采纳率:0%
帮助的人:61.8万
展开全部
证明如下:
由(a+c)(a+b+c)<0知:
4a(a+b+c)<-4c(a+b+c)
只需证明-4c(a+b+c)<2(b-c)即可
设y=2(b-c)-(-4c(a+b+c))
=4c^2+2c(2a+2b-1)+2b
因为(a+c)<0,(a+c+b)>0
另b=-(a+c)
y>4c^2+2c(2a-2(a+c)-1)-2(a+c)
=-2a-4c=-2(a+c)-2c
>0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式