在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC =2根号3,M,N,分别为AB,SB的中

1)求二面角N-CM-B的大小(2)求三棱锥B-CMN的体积希望能够有传统的做法图在这里... 1)求二面角N-CM-B的大小
(2)求三棱锥B-CMN的体积

希望能够有传统的做法
图在这里
展开
羽翼木马
2011-02-02
知道答主
回答量:9
采纳率:0%
帮助的人:12.3万
展开全部
本题若想利用向量的方法解答,首先要先建立适当的直角坐标系,而所给的图形没有现成的垂直关系,但考虑到正三角形自身的对称性,不妨取AC中点O,连结OS、OB.这样就可以建立如图所示空间直角坐标系O-xyz.要想证明AC⊥SB,只须证明 • =0,由已知不难推得证明:

A(2,0,0),B(0,2 ,0),C(-2,0,0), S(0,0,2倍根号2),M(1, 根号3,0),N(0,根号3 根号2, ).∴向量AC =(-4,0,0),向量SB =(0,2 ,2 ),则 向量AC• 向量SB=(-4,0,0)•(0,2 ,2 )=0由此命题得证证明:

(1)由上面可知: 向量CM=(3,根号3 ,0), 向量MN=(-1,0, 根号2).
设向量n =(x,y,z)为平面CMN的一个法向量,有:
向量CM•向量n =3x+根号3 y=0,向量MN• 向量n=-x+根号2 z=0
取z=1,则x= 根号2,y=-根号6 ,
∴向量n =(根号2 ,-根号6 ,1),
又 向量OS=(0,0,2根号2 )为平面ABC的一个法向量,
∴cos( 向量n,向量OS )= 三分之一 .
∴二面角N-CM-B的大小为arccos 三分之一

(2)由(1)得向量MB=(-1,√3, 0).向量n =(√2 ,-√6 ,1)为平面CMN的一个法向量,

∴点B到平面CMN的距离d=|向量MB*向量n|/|向量n|=4√2/3
百度网友fbd61cc
2011-02-02
知道答主
回答量:13
采纳率:0%
帮助的人:13.1万
展开全部
建立空间坐标系,取AC中点O,OS为Z轴就可以了啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式