线性代数的应用题 会英文的帮忙看看啊 怎么做!!!急><... 帮我把公式列出来就行 谢谢~ 5
Acommercialtreefarmsellstreestoretailnurseriesandlandscapingcompanies.Thefarmhasapopu...
A commercial tree farm sells trees to retail nurseries and landscaping companies. The farm has a population capacity of 4000 trees. At any point in time, the population of trees on the farm is divided into three classes; seedlings, saplings and young trees. The farm sells trees at the sapling and young tree stages, receiving prices of $30/tree and $60/tree, respectively.
From one time period to the next, seedlings grow into saplings, and saplings grow into young trees (obviously, either the trees grow very quickly or one time period is longer than a year). For the purposes of simplicity, assume that there is no “death loss”. Saplings may be kept or sold. Saplings that are not sold then become young trees in the next period. All trees reaching the “young tree” stage are sold. In order to “sustain” the production level, the number of seedlings planted each year must equal the number of trees (saplings and young trees) that are sold.
If the manager of the tree farm wishes to maintain overall production at 100% of capacity, and generate $66,000 of revenue per time period from the sale of trees, what is the “steady-state” population distribution for the farm? How many trees are “harvested” from each class in any particular time period? Solve this problem using matrix methods. 展开
From one time period to the next, seedlings grow into saplings, and saplings grow into young trees (obviously, either the trees grow very quickly or one time period is longer than a year). For the purposes of simplicity, assume that there is no “death loss”. Saplings may be kept or sold. Saplings that are not sold then become young trees in the next period. All trees reaching the “young tree” stage are sold. In order to “sustain” the production level, the number of seedlings planted each year must equal the number of trees (saplings and young trees) that are sold.
If the manager of the tree farm wishes to maintain overall production at 100% of capacity, and generate $66,000 of revenue per time period from the sale of trees, what is the “steady-state” population distribution for the farm? How many trees are “harvested” from each class in any particular time period? Solve this problem using matrix methods. 展开
1个回答
展开全部
谢谢我吧。呵呵 我给你翻译过来哈。。
商业林场苗圃出售给零售树木和美化环境的公司。这个农场有4000树的人口容量。在任何时间点,在农场树木人口分为三类,幼苗,幼树和小树。该养殖场在出售树苗和小树阶段的树木,收到$ 30/tree元60/tree,分别价格。
从一个时期到下一个,幼苗长成树苗,幼树和幼苗生长成(显然,无论是树木生长非常迅速,或一个时期是一年以上)。为了简单的目的,假定有没有“死亡损失”。幼树可保持或出售。未出售,则成为今后一个时期幼树树苗。所有树木达到“小树”阶段均有销售。为了“维持”的生产水平,苗数必须等于每年种植的树木(幼树和小树)的出售数量。
如果林场经理希望维持在100%的整体生产的能力,并产生每个时间段,从树木的销售,什么是“稳定状态”,为农业人口66000美元的收入分配?多少树木是“收获”从每个在任何特定时间内上课吗?解决这个问题,利用矩阵的方法
这个是翻译软件翻译的。 我没看,。你自己看看吧
商业林场苗圃出售给零售树木和美化环境的公司。这个农场有4000树的人口容量。在任何时间点,在农场树木人口分为三类,幼苗,幼树和小树。该养殖场在出售树苗和小树阶段的树木,收到$ 30/tree元60/tree,分别价格。
从一个时期到下一个,幼苗长成树苗,幼树和幼苗生长成(显然,无论是树木生长非常迅速,或一个时期是一年以上)。为了简单的目的,假定有没有“死亡损失”。幼树可保持或出售。未出售,则成为今后一个时期幼树树苗。所有树木达到“小树”阶段均有销售。为了“维持”的生产水平,苗数必须等于每年种植的树木(幼树和小树)的出售数量。
如果林场经理希望维持在100%的整体生产的能力,并产生每个时间段,从树木的销售,什么是“稳定状态”,为农业人口66000美元的收入分配?多少树木是“收获”从每个在任何特定时间内上课吗?解决这个问题,利用矩阵的方法
这个是翻译软件翻译的。 我没看,。你自己看看吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询