已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn 小于4/3

yzh10986
2011-02-02 · TA获得超过1487个赞
知道小有建树答主
回答量:228
采纳率:0%
帮助的人:88.3万
展开全部
解:Sn+1 —Sn=an+1=Sn—n+3,
即Sn+1=2Sn-n+3,
所以Sn+1 -(n+1)+2=2(Sn-n+2)
又S1 -1+2=3,所以Sn-n+2=3*2^n-1,
所以bn=n/(3*2^n-1),
Tn=1/3 (1/2^0 +2/2 ^1+3/2^2+4/2^3+...................+n/2^n-1) ............1
0.5Tn=1/3 ( 1/2^1+2/2^2+..............................+n-1/2^n-1 +n/2^n)..............2
1式-2式 得0.5Tn=1/3(1 - n/2^n + 1/2+1/2^2+1/2^3.........+1/2^n-1)
Tn=2/3(1 - n/2^n + 1-1/2^n-1)
=2/3{2-(2n+1)/2^n-1} 小于4/3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式