3道高一立体几何证明题
(1)证明:EB‖平面PAD;(2)若PA=AD,证明:BE⊥平面PDC.
18.如图,在直三棱柱ABC-A,B,C,中,AC=3,BC=4,AB=5,AA,=4,点D为AB的中点。
(1)求证:AC⊥BC,;(2)求证:AC,‖平面CDB,;
19.如图,在□OABC中,点C(1,3).
(1)求OC所在直线的斜率;(2)过点C做CD⊥AB于点D,求CD所在直线的方程。 展开
17、(1) N为PD中点,作辅助线EN、AN
EN=MD=BA且平行,不难看出四边形ABEN不仅为平行四边形,而且是矩形。
BE‖AN , 所以BE‖平面PAD。
(2) PA=AD,PA⊥AD,所以△PAD为等腰直角三角形,故 AN⊥PD
由CD⊥PA,CD⊥AD推出CD⊥平面PAD,故CD⊥AN
由AN⊥PD AN⊥CD 推出 AN⊥平面PDC,
又因为 BE是AN的平行线,故BE⊥平面PDC 。
18、(1) 由勾股定理, AC²+BC²=AB² 可知△ABC为直角三角形,且AC⊥BC。
因为是直三棱柱,有AC⊥CC1
所以AC⊥平面BCC1B1 ,BC1为该平面内一直线,故 AC⊥BC1 。
(2) 作辅助线PA、PD、PB1 ,(P为CD延长线上一点,且PD=DC)
不难看出四边形APBC、四边形APB1C1都是矩形。
∵ AC1‖PB1 ,且PB1为平面CDB1内一直线
∴ AC1‖平面CDB1 。
19、(1) OC斜率:3/1 = 3
(2)OC斜率为3,那么CD斜率就是 -1/3
CD所在直线的方程:y-3 = (-1/3)(x-1)
简化:x+3y-10=0