顶点在原点,焦点在x轴上的抛物线被直线y=2x+1截得弦长为根号15,求抛物线方程

qsmm
2011-02-03 · TA获得超过267万个赞
知道顶级答主
回答量:28.3万
采纳率:90%
帮助的人:12.5亿
展开全部
设抛物线方程为y^2=2px ,直线y=2x+1与抛物线交于点A(x1,y1)和点B(x2,y2)
则根据题意,|AB|=√15
把y=2x+1代入y^2=2px ,得(2x+1)^2=2px
整理得4x^2+(4-2p)x+1=0
由韦达定理得x1+x2= - (4-2p)/4 = (2p-4)/4 x1*x2=1/4
由弦长公式得|AB|=√(1+k^2)* √[(x1+x2)^2-4x1*x2]= √15
解得p=6或者p=-2
所以抛物线方程为y^2=12x或者y^2=-4x
嘉怡之吻
2011-02-03 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4514
采纳率:0%
帮助的人:3341万
展开全部
你好!
把方程设为y²=ax
联立方程:y²=ax, y=2x+1
得:4x²+(4-a)x+1=0
所以x1+x2=(a-4)/4 x1*x2=1/4
所以(x1-x2)²=(x1+x2)²-4x1*x2=(a-4)²/16-1=(a²-8a)/16
由弦长公式,l²=(1+k²)(x1-x2)²=(1+2²)(a²-8a)/16=15
即a²-8a-48=0
即(a+4)(a-12)=0
解得a=-4或12
代入方程得:y²=-4x或y²=12x

或:设抛物线方程为:y²=2px,A(x1,y1),B(x2,y2),∴|AB|²=(x1-x2)²+(y1-y2)²=(x1-x2)²+[(2x

1+1)-(2x2+1)]²=(x1-x2)²+4(x1-x2)²=5(x1-x2)²=(根号15)²=15

∴(x1-x2)²=3 ①,将直线方程y=2x+1代入抛物线方程有:(2x+1)²=2px,即4x²+(4-2p)x+1=0,

依题意x1、x2是其两个不等实根,∴△=(4-2p)²-16>0,即p²-4p>0,∴p>4或p<0。

同时根据韦达定理有:x1+x2=(2p-4)/4=p/2-1,x1x2=1/4,

∴(x1-x2)²=(x1+x2)²-4x1x2=(p/2-1)²-1=p²/4-p,

∴p²/4-p=3,即p²-4p-12=0,即(p+2)(p-6)=0,∴p=-2或p=6,

∴抛物线的方程为:y²=-4x或y²=12x
祝新春快乐!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ebugogocjm
2011-02-03 · 超过12用户采纳过TA的回答
知道答主
回答量:42
采纳率:0%
帮助的人:31.4万
展开全部
解,设焦点在x轴上抛物线为y平方=2px
直线y=2x+1与抛物线交于点A(x1,y1)和点B(x2,y2)
因y=2x+1的斜率为2,弦长为√15,
则AB的x差=√3,由弦长公式得|AB|=√(1+k^2)* √[(x1+x2)^2-4x1*x2]= √15
则p=6或p=-2
所以可得y^2=12x或者y^2=-4x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
dawala007
2011-02-03
知道答主
回答量:36
采纳率:0%
帮助的人:22万
展开全部
抛物线方程为y^2=2px ,直线y=2x+1与抛物线交于点A(x1,y1)和点B(x2,y2)
则根据题意,|AB|=√15
把y=2x+1代入y^2=2px ,得(2x+1)^2=2px
得4x^2+(4-2p)x+1=0
x1+x2= - (4-2p)/4 = (2p-4)/4 x1*x2=1/4
|AB|=√(1+k^2)* √[(x1+x2)^2-4x1*x2]= √15
解得p=6或者p=-2
方程为y^2=12x或者y^2=-4x
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式