这条题 怎么求极限呢
2个回答
展开全部
解法一:(重要极限法)
原式=lim(t->0)[(sin(6t)/(6t))*((2t)/sin(2t))*((6t)/(2tcos(2t)))]
=lim(t->0)[sin(6t)/(6t)]*lim(t->0)[(2t)/sin(2t)]*lim(t->0)[(6t)/(2tcos(2t))]
=1*1*(6/2)
=3;
解法二:(等价无穷小法)
原式=lim(t->0)[(6t+o(t))/(2t+o(t))]
=6/2
=3;
解法三;(罗比达法)
原式=lim(t->0)[(6sec²(6t))/(2cos(2t))]
=6/2
=3。
原式=lim(t->0)[(sin(6t)/(6t))*((2t)/sin(2t))*((6t)/(2tcos(2t)))]
=lim(t->0)[sin(6t)/(6t)]*lim(t->0)[(2t)/sin(2t)]*lim(t->0)[(6t)/(2tcos(2t))]
=1*1*(6/2)
=3;
解法二:(等价无穷小法)
原式=lim(t->0)[(6t+o(t))/(2t+o(t))]
=6/2
=3;
解法三;(罗比达法)
原式=lim(t->0)[(6sec²(6t))/(2cos(2t))]
=6/2
=3。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询