一道超难的题!!!
在三角形ABC中,角C=90度,角B=30度,AC=6,点D在边BC上,AD平分角CAB,E为AC上的一个动点,不与A,C重和,EF垂直AB,垂足为F设CE=x,BF=y...
在三角形ABC中,角C=90度,角B=30度,AC=6,点D在边BC上,AD平分角CAB,E为AC上的一个动点,不与A,C重和,EF垂直AB,垂足为F
设CE=x,BF=y,求y关于x的函数解析式。
当角DEF=90度时,求BF的长。 展开
设CE=x,BF=y,求y关于x的函数解析式。
当角DEF=90度时,求BF的长。 展开
3个回答
展开全部
(1)
∵|AC|=6,|CE|=x
∴|AE|=6-x
∵∠C=90°,∠B=30°
∴∠CAB=60°,|AB|=2|AC|=12,|BC|=6√3
又EF⊥AB,即∠EFA=90°
∴∠AEF=30°
∴|AF|=|AE|/2=(6-x)/2
又|AF|=12-y
∴12-y=(6-x)/2
整理得:y=x/2+9
(2)
∵∠DEF=90°
∴∠CED=180°-90°-∠AEF =60°
∴x=|CE|=|CD|/√3
∵AD平分∠CAB
∴∠DAB=∠B=30°
又|AB|=12
∴|BD|=4√3
∴x=|CE|=|CD|/√3=(|BC|-|BD|)/√3=(6√3-4√3) /√3=2
∴|BF|=y= x/2+9=10
∵|AC|=6,|CE|=x
∴|AE|=6-x
∵∠C=90°,∠B=30°
∴∠CAB=60°,|AB|=2|AC|=12,|BC|=6√3
又EF⊥AB,即∠EFA=90°
∴∠AEF=30°
∴|AF|=|AE|/2=(6-x)/2
又|AF|=12-y
∴12-y=(6-x)/2
整理得:y=x/2+9
(2)
∵∠DEF=90°
∴∠CED=180°-90°-∠AEF =60°
∴x=|CE|=|CD|/√3
∵AD平分∠CAB
∴∠DAB=∠B=30°
又|AB|=12
∴|BD|=4√3
∴x=|CE|=|CD|/√3=(|BC|-|BD|)/√3=(6√3-4√3) /√3=2
∴|BF|=y= x/2+9=10
蓝鲸智能科技
2024-11-21 广告
2024-11-21 广告
理论考试系统是我们河南蓝鲸智能科技有限公司研发的一款高效、便捷的在线考试平台。该系统集题库管理、在线组卷、自动评分等功能于一体,支持多种题型和考试模式。通过智能化的防作弊手段,确保考试的公平公正。用户可以随时随地进行在线练习和模拟考试,有效...
点击进入详情页
本回答由蓝鲸智能科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询