设z=(x,y)是由方程F(y/x,z/x)=0说确定的函数,则分别求出z对x的偏导与z对y的偏导。要过程谢谢!
展开全部
假设y/x 为1,z/x为2,对方程整体求微分得:
dF(y/x,z/x)=d0=0
(F1)'d(y/x) + (F2)'d(z/x) = 0
(F1)'[(xdy - ydx)/x²] + (F2)'[(xdz - zdx)/x²] = 0
(F1)'xdy -(F1)'ydx + (F2)'xdz -(F2)'zdx = 0
移项:
(F2)'xdz =[(F2)'z +(F1)'y]dx - (F1)'xdy
dz={[(F2)'z +(F1)'y]dx - (F1)'xdy}/[(F2)'x]
由全微分的性质,得
z对x的偏导 = [(F2)'z +(F1)'y]/[(F2)'x]
z对y的偏导 =- (F1)'x/((F2)'x) = -(F1)'/(F2)'
dF(y/x,z/x)=d0=0
(F1)'d(y/x) + (F2)'d(z/x) = 0
(F1)'[(xdy - ydx)/x²] + (F2)'[(xdz - zdx)/x²] = 0
(F1)'xdy -(F1)'ydx + (F2)'xdz -(F2)'zdx = 0
移项:
(F2)'xdz =[(F2)'z +(F1)'y]dx - (F1)'xdy
dz={[(F2)'z +(F1)'y]dx - (F1)'xdy}/[(F2)'x]
由全微分的性质,得
z对x的偏导 = [(F2)'z +(F1)'y]/[(F2)'x]
z对y的偏导 =- (F1)'x/((F2)'x) = -(F1)'/(F2)'
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询