设z=(x,y)是由方程F(y/x,z/x)=0说确定的函数,则分别求出z对x的偏导与z对y的偏导。要过程谢谢!

derek_winters
2011-02-03 · TA获得超过263个赞
知道答主
回答量:96
采纳率:0%
帮助的人:46.9万
展开全部
首先说一下 偏导符号我打不出来 就用汉字“偏”代替了 记F中第一项为u 第二项为v
偏Z/偏X=(F'v)* [x*(偏z/偏x)- z]/x2 所以 偏z/偏x =zF’v/(x*F‘v-x2) 注:x2是X平方

偏Z/偏y=F’u *(1/x)+F‘v *(1/x)*(偏z/偏y) 所以 偏z/偏y=(F’u)/ (x-F'v)
理_
2011-02-03 · TA获得超过776个赞
知道小有建树答主
回答量:166
采纳率:0%
帮助的人:244万
展开全部
假设y/x 为1,z/x为2,对方程整体求微分得:
dF(y/x,z/x)=d0=0
(F1)'d(y/x) + (F2)'d(z/x) = 0
(F1)'[(xdy - ydx)/x²] + (F2)'[(xdz - zdx)/x²] = 0
(F1)'xdy -(F1)'ydx + (F2)'xdz -(F2)'zdx = 0
移项:
(F2)'xdz =[(F2)'z +(F1)'y]dx - (F1)'xdy
dz={[(F2)'z +(F1)'y]dx - (F1)'xdy}/[(F2)'x]
由全微分的性质,得
z对x的偏导 = [(F2)'z +(F1)'y]/[(F2)'x]
z对y的偏导 =- (F1)'x/((F2)'x) = -(F1)'/(F2)'
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式