过双曲线x²/9-y²/16=1的右焦点F作倾斜角为45°的直线l和双曲线交于A,B两点,M是弦AB的中点

求MF。... 求MF。 展开
百度网友1d056ce
2011-02-04 · TA获得超过1.3万个赞
知道大有可为答主
回答量:1591
采纳率:0%
帮助的人:3479万
展开全部
解:设A(x1,y1)B(x2,y2)M(x0,y0)
由于直线l倾斜角为a=45°
则:kl=tana=1
由于l过双曲线x^2/9-y^2/16=1的右焦点F(5,0)
则l: y-0=1*(x-5) (点斜式)
即:y=x-5,联立x^2/9-y^2/16=1
得:16x^2-9(x-5)^2=16*9
7x^2+90x-9*41=0
则:x1+x2=-90/7
则:y1+y2=(x1-5)+(x2-5)=x1+x2-10=-160/7
则:x0=(x1+x2)/2=-45/7,y0=(y1+y2)/2=-80/7
则:MF
=√[(x0-5)^2+(y0-0)^2]
=√[2*(80/7)^2]
=(80√2)/7
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式