点F是双曲线x^2/a^2-y^2/b^2=1与抛物线y^2=2px的一个公共焦点,点P是它们的一个公共点,且PF垂直X轴,

则双曲线的离心率为A1+根号5B1+根号2C根号5D根号2答案详细者另奖。... 则双曲线的离心率为
A 1+根号5
B 1+根号2
C 根号5
D 根号2
答案详细者另奖。
展开
箭衡
2011-02-04 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1545
采纳率:100%
帮助的人:3001万
展开全部
解:选B
∵x^2/a^2-y^2/b^2=1与抛物线y^2=2px的一个公共焦点
设p>0,∴p=2c
∵P是它们的一个公共点,且PF垂直X轴
设P点的纵坐标大于0
∴│PF│=p,∴P(p/2,p)
∵点P在双曲线x^2/a^2-y^2/b^2=1上
∴p^2/4a^2-p^2/b^2=1
∵p=2c,b^2=c^2-a^2
∴c^2/a^2-4c^2/(c^2-a^2)=1
化简得: c^4-6c^2a^2+a^4=0
∴e^4-6e^2+1=0
∴e^2>1
∴e^2=3+2√2
∴e=1+√2
∴选B
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式