展开全部
解法1:
要构成三角形,也就是最长的一条<5.
我们可以从反面来求解这个问题,就是求最长的线段>=5的概率.
分3个部分:
(1)从左向右第一条线段>=5的概率,即为两点均在后半段的概率
P1=1/2*1/2=1/4
(2)从左向右第三条线段>=5的概率,即为两点均在前半段的概率
P2=1/4
(3) 中间一条线段>=5的概率:
若第一个点(假设两点按时间先后投放,不影响结果)在(0,5)上的x处,则其在x附近dx长度上概率为dx/10,此时第二个点在其右边>=5
处的概率为[10-(x+5)]/10=(5-x)/10,
将以上2个概率相乘并在(0,5)区间上积分,得到概率为1/8
对应地,第一个点在(5,10)上,并且第二个点在其左边>=5
处的概率同样是1/8
因此P3=1/8+1/8=1/4;
综上,构成三角形的概率为1-1/4-1/4-1/4=1/4
解法2 见图
三段构成三角形:10>a+b>c=10-(a+b),即:10>a+b>5。0<a<5,0<b<5.三段任意:0<a<10,0<b<10.这三段可以构成三角形的概率=S1/S2=1/4。其中S1=三角形lmn,S2=三角形LMN。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询