高中数学高手进:设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,右焦点到直线x/a+y/b=1的距离d=(√21)/7,O为坐标原点.过点O作两条互相垂直的...
设椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率e=1/2,右焦点到直线x/a+y/b=1的距离d=(√21)/7,O为坐标原点.
过点O作两条互相垂直的射线,与椭圆C分别交与A,B亮点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值。 展开
过点O作两条互相垂直的射线,与椭圆C分别交与A,B亮点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值。 展开
3个回答
展开全部
解:
由已知得: e=c/a=1/2 -----(1)
由于右焦点(c,0)到直线bx+ay-ab=0的距离d=(√21)/7
则有:d=(√21)/7=|bc-ab|/[√(a^2+b^2)] -----(2)
又:a^2=b^2+c^2 ----(3)
联立(1)(2)(3)得:a^2=4,b^2=3
则椭圆C:x^2/4+y^2/3=1
设直线AB:y=kx+m,A(x1,y1),B(x2,y2)
[1]k存在时,联立AB与C得:
3x^2+4(kx+m)^2=12
(3+4k^2)x^2+8kmx+4m^2-12=0
则:x1+x2=-8km/(3+4k^2)
x1x2=(4m^2-12)/(3+4k^2)
且判别式:(8km)^2-4(3+4k^2)(4m^2-12)>0
由于:OA垂直OB
则:向量OA*向量OB=0
即:x1x2+y1y2=0
又:y1y2=(kx1+m)(kx2+m)
则:(1+k^2)x1x2+km(x1+x2)+m^2=0
代入化简得:m^2=(12/7)(k^2+1)
点O(0,0)到AB距离
d'=|m|/√[1+k^2]
由于:(d')^2=m^2/(1+k^2)=12/7
则:d'=(2√21)/7
[2]k不存在时,也可得到d'=2√21/7
故点O到直线AB的距离为定值(2√21)/7
|AB|
=[√(1+k^2)]*|x1-x2|
=[√(1+k^2)]*√[(x1+x2)^2-4x1x2]
=[√(1+k^2)]*√[(8km)^2/(3+4k^2)^2-4(4m^2-12)/(3+4k^2)]
=[√(1+k^2)]*√[(12k^2+9-3m^2)/(3+4k^2)^2]
=[√(1+k^2)]*√(48/7)*√[(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(1+k^2)(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(16k^4+25k^2+9)/(16k^4+24k^2+9]
=√(48/7)*√[1+ (k^2)/(16k^4+24k^2+9)]
=√(48/7)*√{1+ 1/[16k^2+24+(9/k^2)]}
由于:k^2>0
则由均值不等式得:16k^2+9/k^2>=2*√[(16k^2)*(9/k^2)]=24
故:1/[16k^2+24+(9/k^2)] >=1/(24+24)=1/48
则:|AB|>=√(48/7)*√[1+ 1/48]=√7
故AB长度的最小值为√7
由已知得: e=c/a=1/2 -----(1)
由于右焦点(c,0)到直线bx+ay-ab=0的距离d=(√21)/7
则有:d=(√21)/7=|bc-ab|/[√(a^2+b^2)] -----(2)
又:a^2=b^2+c^2 ----(3)
联立(1)(2)(3)得:a^2=4,b^2=3
则椭圆C:x^2/4+y^2/3=1
设直线AB:y=kx+m,A(x1,y1),B(x2,y2)
[1]k存在时,联立AB与C得:
3x^2+4(kx+m)^2=12
(3+4k^2)x^2+8kmx+4m^2-12=0
则:x1+x2=-8km/(3+4k^2)
x1x2=(4m^2-12)/(3+4k^2)
且判别式:(8km)^2-4(3+4k^2)(4m^2-12)>0
由于:OA垂直OB
则:向量OA*向量OB=0
即:x1x2+y1y2=0
又:y1y2=(kx1+m)(kx2+m)
则:(1+k^2)x1x2+km(x1+x2)+m^2=0
代入化简得:m^2=(12/7)(k^2+1)
点O(0,0)到AB距离
d'=|m|/√[1+k^2]
由于:(d')^2=m^2/(1+k^2)=12/7
则:d'=(2√21)/7
[2]k不存在时,也可得到d'=2√21/7
故点O到直线AB的距离为定值(2√21)/7
|AB|
=[√(1+k^2)]*|x1-x2|
=[√(1+k^2)]*√[(x1+x2)^2-4x1x2]
=[√(1+k^2)]*√[(8km)^2/(3+4k^2)^2-4(4m^2-12)/(3+4k^2)]
=[√(1+k^2)]*√[(12k^2+9-3m^2)/(3+4k^2)^2]
=[√(1+k^2)]*√(48/7)*√[(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(1+k^2)(16k^2+9)/(3+4k^2)^2]
=√(48/7)*√[(16k^4+25k^2+9)/(16k^4+24k^2+9]
=√(48/7)*√[1+ (k^2)/(16k^4+24k^2+9)]
=√(48/7)*√{1+ 1/[16k^2+24+(9/k^2)]}
由于:k^2>0
则由均值不等式得:16k^2+9/k^2>=2*√[(16k^2)*(9/k^2)]=24
故:1/[16k^2+24+(9/k^2)] >=1/(24+24)=1/48
则:|AB|>=√(48/7)*√[1+ 1/48]=√7
故AB长度的最小值为√7
展开全部
这题好难,你是高三的吧 反正我是~我是学文的~我极讨厌数学~
右焦点F2(c,0)到直线bx+ay-ab=0距离为(√21)/7 有d=|bc-ba|\√(a^2+b^2)=(√21)/7
完了你就解~由e=1\2有a\c=1\2推出c=a\2 再有a^2=b^2+c^2 推得3a^2\4=b^2
好顿解得a^2=4 ,b^2=3 椭圆为x^2\4+y^2\3=1
右焦点F2(c,0)到直线bx+ay-ab=0距离为(√21)/7 有d=|bc-ba|\√(a^2+b^2)=(√21)/7
完了你就解~由e=1\2有a\c=1\2推出c=a\2 再有a^2=b^2+c^2 推得3a^2\4=b^2
好顿解得a^2=4 ,b^2=3 椭圆为x^2\4+y^2\3=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-02-05
展开全部
先笼统的说一下,等下一稿出来,在具体分析
很有想法的一篇文章。
选题很好,说实话,这个题目我也不太敢做,因为比较难找到内在的规律。
我觉得,一个主意排版,挤得太紧了,让人没有看的欲望,学会排版很重要的。
另外,我觉得,你应该突出两点:
(1)区分参变量的关系
(2)点出要讨论的原因。
参量的问题我说了,先当做没有参数的做,做到不能做了,必须要讨论了再进行讨论。对不对。
那么,什么是不能做下去了呢?这一步你应该加以说明一下的。并且告诉别人你准备怎么去讨论比较好。
然后,最后的结论处,你可以给个总结,把你的思路整理一下。
还有,对于含参数的题目,做个分类。至少分成已知解和讨论参数大小的问题吧。
具体分类怎么分你来决定吧。
不错的,有一篇好文章的潜质。加油
不要急,慢慢做,动动脑子,会很有帮助的
很有想法的一篇文章。
选题很好,说实话,这个题目我也不太敢做,因为比较难找到内在的规律。
我觉得,一个主意排版,挤得太紧了,让人没有看的欲望,学会排版很重要的。
另外,我觉得,你应该突出两点:
(1)区分参变量的关系
(2)点出要讨论的原因。
参量的问题我说了,先当做没有参数的做,做到不能做了,必须要讨论了再进行讨论。对不对。
那么,什么是不能做下去了呢?这一步你应该加以说明一下的。并且告诉别人你准备怎么去讨论比较好。
然后,最后的结论处,你可以给个总结,把你的思路整理一下。
还有,对于含参数的题目,做个分类。至少分成已知解和讨论参数大小的问题吧。
具体分类怎么分你来决定吧。
不错的,有一篇好文章的潜质。加油
不要急,慢慢做,动动脑子,会很有帮助的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询