
已知实数xy满足1<x2+y2<4,求u=x2+y2+xy的最大最小值 说说思路 谢谢
2个回答
展开全部
令x = rcos(a),y = rsin(a),其中1<r<2,0<=a<2pi(圆周常数),
则u = r^2+r^2sin(a)cos(a) = r^2 *(1+sin(2a)).
因为 0<=1+sin(2a)<=2, 1<r^2<4
因此 0<=u<=8.
min u = 0 iff. sin(2a)=-1 iff. a=3pi/4 or a=7pi/4
max u = 8 iff. r=2 and sin(2a)=1
则u = r^2+r^2sin(a)cos(a) = r^2 *(1+sin(2a)).
因为 0<=1+sin(2a)<=2, 1<r^2<4
因此 0<=u<=8.
min u = 0 iff. sin(2a)=-1 iff. a=3pi/4 or a=7pi/4
max u = 8 iff. r=2 and sin(2a)=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询